Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
2.
Vet Res ; 55(1): 15, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317242

RESUMO

This study investigated the role of causative infectious agents in ulceration of the non-glandular part of the porcine stomach (pars oesophagea). In total, 150 stomachs from slaughter pigs were included, 75 from pigs that received a meal feed, 75 from pigs that received an equivalent pelleted feed with a smaller particle size. The pars oesophagea was macroscopically examined after slaughter. (q)PCR assays for H. suis, F. gastrosuis and H. pylori-like organisms were performed, as well as 16S rRNA sequencing for pars oesophagea microbiome analyses. All 150 pig stomachs showed lesions. F. gastrosuis was detected in 115 cases (77%) and H. suis in 117 cases (78%), with 92 cases (61%) of co-infection; H. pylori-like organisms were detected in one case. Higher infectious loads of H. suis increased the odds of severe gastric lesions (OR = 1.14, p = 0.038), while the presence of H. suis infection in the pyloric gland zone increased the probability of pars oesophageal erosions [16.4% (95% CI 0.6-32.2%)]. The causal effect of H. suis was mediated by decreased pars oesophageal microbiome diversity [-1.9% (95% CI - 5.0-1.2%)], increased abundances of Veillonella and Campylobacter spp., and decreased abundances of Lactobacillus, Escherichia-Shigella, and Enterobacteriaceae spp. Higher infectious loads of F. gastrosuis in the pars oesophagea decreased the odds of severe gastric lesions (OR = 0.8, p = 0.0014). Feed pelleting had no significant impact on the prevalence of severe gastric lesions (OR = 1.72, p = 0.28). H. suis infections are a risk factor for ulceration of the porcine pars oesophagea, probably mediated through alterations in pars oesophageal microbiome diversity and composition.


Assuntos
Fusobacterium , Infecções por Helicobacter , Helicobacter heilmannii , Microbiota , Úlcera Gástrica , Doenças dos Suínos , Animais , Suínos , Úlcera Gástrica/microbiologia , Úlcera Gástrica/patologia , Úlcera Gástrica/veterinária , RNA Ribossômico 16S , Doenças dos Suínos/microbiologia , Infecções por Helicobacter/veterinária , Infecções por Helicobacter/microbiologia , Mucosa Gástrica
3.
Sci Adv ; 10(3): eadi3621, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38241375

RESUMO

Design in synthetic biology is typically goal oriented, aiming to repurpose or optimize existing biological functions, augmenting biology with new-to-nature capabilities, or creating life-like systems from scratch. While the field has seen many advances, bottlenecks in the complexity of the systems built are emerging and designs that function in the lab often fail when used in real-world contexts. Here, we propose an open-ended approach to biological design, with the novelty of designed biology being at least as important as how well it fulfils its goal. Rather than solely focusing on optimization toward a single best design, designing with novelty in mind may allow us to move beyond the diminishing returns we see in performance for most engineered biology. Research from the artificial life community has demonstrated that embracing novelty can automatically generate innovative and unexpected solutions to challenging problems beyond local optima. Synthetic biology offers the ideal playground to explore more creative approaches to biological design.


Assuntos
Evolução Biológica , Biologia Sintética , Estudos Longitudinais
4.
Front Plant Sci ; 14: 1187573, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37588419

RESUMO

Electrochemical impedance spectroscopy has emerged over the past decade as an efficient, non-destructive method to investigate various (eco-)physiological and morphological properties of plants. This work reviews the state-of-the-art of impedance spectra modeling for plant applications. In addition to covering the traditional, widely-used representations of electrochemical impedance spectra, we also consider the more recent machine-learning-based approaches.

5.
Front Plant Sci ; 14: 1299208, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38293629

RESUMO

Historically, plant and crop sciences have been quantitative fields that intensively use measurements and modeling. Traditionally, researchers choose between two dominant modeling approaches: mechanistic plant growth models or data-driven, statistical methodologies. At the intersection of both paradigms, a novel approach referred to as "simulation intelligence", has emerged as a powerful tool for comprehending and controlling complex systems, including plants and crops. This work explores the transformative potential for the plant science community of the nine simulation intelligence motifs, from understanding molecular plant processes to optimizing greenhouse control. Many of these concepts, such as surrogate models and agent-based modeling, have gained prominence in plant and crop sciences. In contrast, some motifs, such as open-ended optimization or program synthesis, still need to be explored further. The motifs of simulation intelligence can potentially revolutionize breeding and precision farming towards more sustainable food production.

6.
Limnol Oceanogr ; 67(8): 1647-1669, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36247386

RESUMO

Plankton imaging systems supported by automated classification and analysis have improved ecologists' ability to observe aquatic ecosystems. Today, we are on the cusp of reliably tracking plankton populations with a suite of lab-based and in situ tools, collecting imaging data at unprecedentedly fine spatial and temporal scales. But these data have potential well beyond examining the abundances of different taxa; the individual images themselves contain a wealth of information on functional traits. Here, we outline traits that could be measured from image data, suggest machine learning and computer vision approaches to extract functional trait information from the images, and discuss promising avenues for novel studies. The approaches we discuss are data agnostic and are broadly applicable to imagery of other aquatic or terrestrial organisms.

7.
Methods Mol Biol ; 2516: 51-59, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35922621

RESUMO

A major goal in synthetic biology is the engineering of synthetic gene circuits with a predictable, controlled and designed outcome. This creates a need for building blocks that can modulate gene expression without interference with the native cell system. A tool allowing forward engineering of promoters with predictable transcription initiation frequency is still lacking. Promoter libraries specific for σ70 to ensure the orthogonality of gene expression were built in Escherichia coli and labeled using fluorescence-activated cell sorting to obtain high-throughput DNA sequencing data to train a convolutional neural network. We were able to confirm in vivo that the model is able to predict the promoter transcription initiation frequency (TIF) of new promoter sequences. Here, we provide an online tool for promoter design (ProD) in E. coli, which can be used to tailor output sequences of desired promoter TIF or predict the TIF of a custom sequence.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Regiões Promotoras Genéticas , Biologia Sintética
8.
Sci Rep ; 12(1): 12594, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869238

RESUMO

Plants are complex organisms subject to variable environmental conditions, which influence their physiology and phenotype dynamically. We propose to interpret plants as reservoirs in physical reservoir computing. The physical reservoir computing paradigm originates from computer science; instead of relying on Boolean circuits to perform computations, any substrate that exhibits complex non-linear and temporal dynamics can serve as a computing element. Here, we present the first application of physical reservoir computing with plants. In addition to investigating classical benchmark tasks, we show that Fragaria × ananassa (strawberry) plants can solve environmental and eco-physiological tasks using only eight leaf thickness sensors. Although the results indicate that plants are not suitable for general-purpose computation but are well-suited for eco-physiological tasks such as photosynthetic rate and transpiration rate. Having the means to investigate the information processing by plants improves quantification and understanding of integrative plant responses to dynamic changes in their environment. This first demonstration of physical reservoir computing with plants is key for transitioning towards a holistic view of phenotyping and early stress detection in precision agriculture applications since physical reservoir computing enables us to analyse plant responses in a general way: environmental changes are processed by plants to optimise their phenotype.


Assuntos
Fragaria , Agricultura , Fragaria/fisiologia , Fotossíntese , Folhas de Planta
9.
Front Plant Sci ; 13: 907095, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795354

RESUMO

Over the past years, CRISPR/Cas-mediated genome editing has revolutionized plant genetic studies and crop breeding. Specifically, due to its ability to simultaneously target multiple genes, the multiplex CRISPR/Cas system has emerged as a powerful technology for functional analysis of genetic pathways. As such, it holds great potential for application in plant systems to discover genetic interactions and to improve polygenic agronomic traits in crop breeding. However, optimal experimental design regarding coverage of the combinatorial design space in multiplex CRISPR/Cas screens remains largely unexplored. To contribute to well-informed experimental design of such screens in plants, we first establish a representation of the design space at different stages of a multiplex CRISPR/Cas experiment. We provide two independent computational approaches yielding insights into the plant library size guaranteeing full coverage of all relevant multiplex combinations of gene knockouts in a specific multiplex CRISPR/Cas screen. These frameworks take into account several design parameters (e.g., the number of target genes, the number of gRNAs designed per gene, and the number of elements in the combinatorial array) and efficiencies at subsequent stages of a multiplex CRISPR/Cas experiment (e.g., the distribution of gRNA/Cas delivery, gRNA-specific mutation efficiency, and knockout efficiency). With this work, we intend to raise awareness about the limitations regarding the number of target genes and order of genetic interaction that can be realistically analyzed in multiplex CRISPR/Cas experiments with a given number of plants. Finally, we establish guidelines for designing multiplex CRISPR/Cas experiments with an optimal coverage of the combinatorial design space at minimal plant library size.

10.
Viruses ; 14(6)2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35746800

RESUMO

Receptor-binding proteins (RBPs) of bacteriophages initiate the infection of their corresponding bacterial host and act as the primary determinant for host specificity. The ever-increasing amount of sequence data enables the development of predictive models for the automated identification of RBP sequences. However, the development of such models is challenged by the inconsistent or missing annotation of many phage proteins. Recently developed tools have started to bridge this gap but are not specifically focused on RBP sequences, for which many different annotations are available. We have developed two parallel approaches to alleviate the complex identification of RBP sequences in phage genomic data. The first combines known RBP-related hidden Markov models (HMMs) from the Pfam database with custom-built HMMs to identify phage RBPs based on protein domains. The second approach consists of training an extreme gradient boosting classifier that can accurately discriminate between RBPs and other phage proteins. We explained how these complementary approaches can reinforce each other in identifying RBP sequences. In addition, we benchmarked our methods against the recently developed PhANNs tool. Our best performing model reached a precision-recall area-under-the-curve of 93.8% and outperformed PhANNs on an independent test set, reaching an F1-score of 84.0% compared to 69.8%.


Assuntos
Receptores de Bacteriófagos , Bacteriófagos , Bacteriófagos/genética , Bacteriófagos/metabolismo , Proteínas de Transporte/metabolismo , Ligação Proteica , Proteínas/metabolismo
11.
Clin Chem ; 68(7): 906-916, 2022 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-35266984

RESUMO

BACKGROUND: Synthetic cannabinoid receptor agonists (SCRAs) are amongst the largest groups of new psychoactive substances (NPS). Their often high activity at the CB1 cannabinoid receptor frequently results in intoxication, imposing serious health risks. Hence, continuous monitoring of these compounds is important, but challenged by the rapid emergence of novel analogues that are missed by traditional targeted detection strategies. We addressed this need by performing an activity-based, universal screening on a large set (n = 968) of serum samples from patients presenting to the emergency department with acute recreational drug or NPS toxicity. METHODS: We assessed the performance of an activity-based method in detecting newly circulating SCRAs compared with liquid chromatography coupled to high-resolution mass spectrometry. Additionally, we developed and evaluated machine learning models to reduce the screening workload by automating interpretation of the activity-based screening output. RESULTS: Activity-based screening delivered outstanding performance, with a sensitivity of 94.6% and a specificity of 98.5%. Furthermore, the developed machine learning models allowed accurate distinction between positive and negative patient samples in an automatic manner, closely matching the manual scoring of samples. The performance of the model depended on the predefined threshold, e.g., at a threshold of 0.055, sensitivity and specificity were both 94.0%. CONCLUSION: The activity-based bioassay is an ideal candidate for untargeted screening of novel SCRAs. The combination of this universal screening assay and a machine learning approach for automated sample scoring is a promising complement to conventional analytical methods in clinical practice.


Assuntos
Canabinoides , Drogas Ilícitas , Agonistas de Receptores de Canabinoides/farmacologia , Cromatografia Líquida/métodos , Humanos , Aprendizado de Máquina
12.
Lancet Microbe ; 3(8): e625-e637, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35036970

RESUMO

Despite the global investment in One Health disease surveillance, it remains difficult and costly to identify and monitor the wildlife reservoirs of novel zoonotic viruses. Statistical models can guide sampling target prioritisation, but the predictions from any given model might be highly uncertain; moreover, systematic model validation is rare, and the drivers of model performance are consequently under-documented. Here, we use the bat hosts of betacoronaviruses as a case study for the data-driven process of comparing and validating predictive models of probable reservoir hosts. In early 2020, we generated an ensemble of eight statistical models that predicted host-virus associations and developed priority sampling recommendations for potential bat reservoirs of betacoronaviruses and bridge hosts for SARS-CoV-2. During a time frame of more than a year, we tracked the discovery of 47 new bat hosts of betacoronaviruses, validated the initial predictions, and dynamically updated our analytical pipeline. We found that ecological trait-based models performed well at predicting these novel hosts, whereas network methods consistently performed approximately as well or worse than expected at random. These findings illustrate the importance of ensemble modelling as a buffer against mixed-model quality and highlight the value of including host ecology in predictive models. Our revised models showed an improved performance compared with the initial ensemble, and predicted more than 400 bat species globally that could be undetected betacoronavirus hosts. We show, through systematic validation, that machine learning models can help to optimise wildlife sampling for undiscovered viruses and illustrates how such approaches are best implemented through a dynamic process of prediction, data collection, validation, and updating.


Assuntos
COVID-19 , Quirópteros , Vírus , Animais , COVID-19/epidemiologia , SARS-CoV-2 , Filogenia
13.
Curr Opin Virol ; 52: 174-181, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34952265

RESUMO

Machine learning has been broadly implemented to investigate biological systems. In this regard, the field of phage biology has embraced machine learning to elucidate and predict phage-host interactions, based on receptor-binding proteins, (anti-)defense systems, prophage detection, and life cycle recognition. Here, we highlight the enormous potential of integrating information from omics data with insights from systems biology to better understand phage-host interactions. We conceptualize and discuss the potential of a multilayer model that mirrors the phage infection process, integrating adsorption, bacterial pan-immune components and hijacking of the bacterial metabolism to predict phage infectivity. In the future, this model can offer insights into the underlying mechanisms of the infection process, and digital phagograms can support phage cocktail design and phage engineering.


Assuntos
Bacteriófagos , Bactérias , Aprendizado de Máquina , Prófagos/metabolismo , Proteínas/metabolismo
14.
Bioinformatics ; 38(4): 1144-1145, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-34788379

RESUMO

SUMMARY: In combinatorial biotechnology, it is crucial for screening experiments to sufficiently cover the design space. In the BioCCP.jl package (Julia), we provide functions for minimum sample size determination based on the mathematical framework coined the Coupon Collector Problem. AVAILABILITY AND IMPLEMENTATION: BioCCP.jl, including source code, documentation and Pluto notebooks, is available at https://github.com/kirstvh/BioCCP.jl.


Assuntos
Documentação , Software , Abelhas , Animais
15.
Viruses ; 13(7)2021 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-34206969

RESUMO

Phage lytic proteins are a clinically advanced class of novel enzyme-based antibiotics, so-called enzybiotics. A growing community of researchers develops phage lytic proteins with the perspective of their use as enzybiotics. A successful translation of enzybiotics to the market requires well-considered selections of phage lytic proteins in early research stages. Here, we introduce PhaLP, a database of phage lytic proteins, which serves as an open portal to facilitate the development of phage lytic proteins. PhaLP is a comprehensive, easily accessible and automatically updated database (currently 16,095 entries). Capitalizing on the rich content of PhaLP, we have mapped the high diversity of natural phage lytic proteins and conducted analyses at three levels to gain insight in their host-specific evolution. First, we provide an overview of the modular diversity. Secondly, datamining and interpretable machine learning approaches were adopted to reveal host-specific design rules for domain architectures in endolysins. Lastly, the evolution of phage lytic proteins on the protein sequence level was explored, revealing host-specific clusters. In sum, PhaLP can act as a starting point for the broad community of enzybiotic researchers, while the steadily improving evolutionary insights will serve as a natural inspiration for protein engineers.


Assuntos
Bacteriófagos/química , Bases de Dados de Proteínas , Proteínas Virais/química , Sequência de Aminoácidos , Bacteriófagos/genética , Endopeptidases/genética , Especificidade de Hospedeiro , Aprendizado de Máquina , Filogenia , Proteínas Virais/genética
16.
Entropy (Basel) ; 23(6)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199402

RESUMO

Shannon's entropy measure is a popular means for quantifying ecological diversity. We explore how one can use information-theoretic measures (that are often called indices in ecology) on joint ensembles to study the diversity of species interaction networks. We leverage the little-known balance equation to decompose the network information into three components describing the species abundance, specificity, and redundancy. This balance reveals that there exists a fundamental trade-off between these components. The decomposition can be straightforwardly extended to analyse networks through time as well as space, leading to the corresponding notions for alpha, beta, and gamma diversity. Our work aims to provide an accessible introduction for ecologists. To this end, we illustrate the interpretation of the components on numerous real networks. The corresponding code is made available to the community in the specialised Julia package EcologicalNetworks.jl.

17.
Pharmaceuticals (Basel) ; 14(5)2021 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-34063324

RESUMO

Combining drugs, a phenomenon often referred to as polypharmacy, can induce additional adverse effects. The identification of adverse combinations is a key task in pharmacovigilance. In this context, in silico approaches based on machine learning are promising as they can learn from a limited number of combinations to predict for all. In this work, we identify various subtasks in predicting effects caused by drug-drug interaction. Predicting drug-drug interaction effects for drugs that already exist is very different from predicting outcomes for newly developed drugs, commonly called a cold-start problem. We propose suitable validation schemes for the different subtasks that emerge. These validation schemes are critical to correctly assess the performance. We develop a new model that obtains AUC-ROC =0.843 for the hardest cold-start task up to AUC-ROC =0.957 for the easiest one on the benchmark dataset of Zitnik et al. Finally, we illustrate how our predictions can be used to improve post-market surveillance systems or detect drug-drug interaction effects earlier during drug development.

18.
Ecol Evol ; 11(9): 3841-3855, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33976779

RESUMO

Observed biotic interactions between species, such as in pollination, predation, and competition, are determined by combinations of population densities, matching in functional traits and phenology among the organisms, and stochastic events (neutral effects).We propose optimal transportation theory as a unified view for modeling species interaction networks with different intensities of interactions. We pose the coupling of two distributions as a constrained optimization problem, maximizing both the system's average utility and its global entropy, that is, randomness. Our model follows naturally from applying the MaxEnt principle to this problem setting.This approach allows for simulating changes in species relative densities as well as to disentangle the impact of trait matching and neutral forces.We provide a framework for estimating the pairwise species utilities from data. Experimentally, we show how to use this framework to perform trait matching and predict the coupling in pollination and host-parasite networks.

19.
Antibiotics (Basel) ; 10(3)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799561

RESUMO

Bacteriophage-encoded lysins are an emerging class of antibacterial enzymes based on peptidoglycan degradation. The modular composition of lysins is a hallmark feature enabling optimization of antibacterial and pharmacological properties by engineering of lysin candidates based on lysin and non-lysin modules. In this regard, the recent introduction of the VersaTile technique allows the rapid construction of large modular lysin libraries based on a premade repository of building blocks. In this study, we perform a high-throughput construction and screening of five combinatorial lysin libraries with different configurations, targeting Klebsiella pneumoniae. An elaborate analysis of the activity distribution of 940 variants and sequencing data of 74 top hits inhibiting the growth of Klebsiella pneumoniae could be associated with specific design rules. Specific outer membrane permeabilizing peptides (OMPs) and enzymatically active domains (EADs) are significantly overrepresented among the top hits, while cell wall binding domains (CBDs) are equally represented. Especially libraries with the configuration (OMP-linker-CBD-EAD) and the inverse configuration (CBD-EAD-linker-OMP) yield the most active variants, with discernible clusters of variants that emerge above the remaining variants. The approach implemented here provides a blueprint for discovery campaigns of engineered lysins starting from libraries with different configurations and compositions.

20.
Sci Rep ; 11(1): 1467, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446856

RESUMO

Nowadays, bacteriophages are increasingly considered as an alternative treatment for a variety of bacterial infections in cases where classical antibiotics have become ineffective. However, characterizing the host specificity of phages remains a labor- and time-intensive process. In order to alleviate this burden, we have developed a new machine-learning-based pipeline to predict bacteriophage hosts based on annotated receptor-binding protein (RBP) sequence data. We focus on predicting bacterial hosts from the ESKAPE group, Escherichia coli, Salmonella enterica and Clostridium difficile. We compare the performance of our predictive model with that of the widely used Basic Local Alignment Search Tool (BLAST). Our best-performing predictive model reaches Precision-Recall Area Under the Curve (PR-AUC) scores between 73.6 and 93.8% for different levels of sequence similarity in the collected data. Our model reaches a performance comparable to that of BLASTp when sequence similarity in the data is high and starts outperforming BLASTp when sequence similarity drops below 75%. Therefore, our machine learning methods can be especially useful in settings in which sequence similarity to other known sequences is low. Predicting the hosts of novel metagenomic RBP sequences could extend our toolbox to tune the host spectrum of phages or phage tail-like bacteriocins by swapping RBPs.


Assuntos
Bacteriófagos/genética , Especificidade de Hospedeiro/genética , Análise de Sequência de DNA/métodos , Animais , Bactérias/genética , Clostridioides difficile/genética , Escherichia coli/genética , Humanos , Aprendizado de Máquina , Metagenômica/métodos , Ligação Proteica/genética , Salmonella enterica/genética , Proteínas da Cauda Viral/genética , Vírion/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...